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An inverse potential methodology is introduced for the solution of the fully 3-D target 
pressure problem. The method is based on a potential function/stream function 
formulation, where the physical space is mapped onto a computational one via a body- 
fitted coordinate transformation. A potential function and two stream vectors are used 
as the independent natural coordinates, whilst the velocity magnitude, the aspect ratio 
and the skew angle of the elementary streamtube cross-section are assumed to be the 
dependent ones. A novel procedure based on differential geometry and generalized 
tensor analysis arguments is employed to formulate the method. The governing 
differential equations are derived by requiring the curvature tensor of the flat 3-D 
physical Eucledian space, expressed in terms of the curvilinear natural coordinates, to 
be zero. The resulting equations are discussed and investigated with particular 
emphasis on the existence and uniqueness of their solution. The general 3-D inverse 
potential problem, with 'target pressure' boundary conditions only, seems to be ill- 
posed accepting multiple solutions. This multiplicity is alleviated by considering 
elementary streamtubes with orthogonal cross-sections. The assumption of orthogonal 
stream surfaces reduces the number of dependent variables by one, simplifying the 
governing equations to an elliptic p.d.e. for the velocity magnitude and to a second- 
order 0.d.e. for the streamtube aspect ratio. The solution of these two equations 
provides the flow field. Geometry is determined independently by integrating Frenet 
equations along the natural coordinate lines, after the flow field has been calculated. 
The numerical implementation as well as validation test cases for the proposed inverse 
methodology are presented in the companion paper (Paper 2). 

1. Introduction 
Optimal shape design in the context of applied aero-thermodynamics is one of the 

CFD challenges for the next decade. The development of reliable automated methods 
which will reduce the human expertise element in the design loop will increase the 
quality and duration of the products, while decreasing, on the other hand, their 
development cost. Although the concept is as old as the theory of aerodynamics itself, 
the maturation of analysis methods and the continuously increasing computing power 
have put it backstage. Comprehensive reviews on optimal shape design methods have 
been presented by Dulikravich (1990) and more recently by Labrujere & Sloof (1993). 

First attempts in the field of optimal shape design are traced back to the mid-forties 
when inverse potential methods based on conformal mapping and potential theory 
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were applied to the design of airfoils. In the fifties, Stanitz (1953) developed his inverse 
potential method for compressible flows. Applying a body-fitted coordinate trans- 
formation, Stanitz derived the inverse potential flow equations on a ‘natural’ 
computational plane employing the potential function and the stream function as 
independent variables. The two-dimensional (2-D) inverse problem can then be solved 
if ‘ target’ velocity (or pressure) distributions are imposed over the complete boundaries 
of the domain. Stanitz’s method, being more flexible than the conformal mapping ones, 
has been extended to axisymmetric flows (Nelson & Yang 1977) as well as to 
turbomachinery flows including the planar and the axisymmetric rotating or non- 
rotating cascades (Schmidt 1980; Hawthorne et al. 1984; Bonataki, Chaviaropoulos & 
Papailiou 1991). The 2-D potential target pressure problem has been recently 
reconsidered by Barron (1 990), who provided an alternative formulation using the 
Von-Mises transformation, by Volpe (1 990) who developed iterative profile closure 
conditions for compressible flows, and by Chaviaropoulos, Dedoussis & Papailiou 
(1993) who reformulated the airfoil design problem using differential geometry 
principles. 

The computational cost of all the above-mentioned ‘target pressure’ (inverse) 
methods is equivalent to that of analysis (direct) methods. For reasons which will be 
explained below we will refer to these methods as ‘single-pass’ methods. The single- 
pass methods are very efficient in terms of the computational cost and provide a 
physical insight to the design problem. Conceptually, however, they are restricted to 
2-D potential flows only. Some extensions to 2-D rotational flows using the Clebsch 
transformation are reported by Borges (1991) and Dedoussis, Chaviaropoulos & 
Papailiou (1993). Stanitz (1980, 1985) extended his original 2-D potential method to 
three dimensional (3-D) flows. A disadvantage of the single-pass methods is related to 
their inability to incorporate flow or geometrical side constraints. Thus, the designer’s 
expertise remains crucial for determining the ‘ appropriate’ target pressure distribution. 

In the effort to circumvent the drawbacks of single-pass methods, optimization 
methods appeared in the design field as an alternative. These methods solve a general 
minimization problem, the cost function of which expresses desired flow properties 
along with flow or geometrical constraints. This cost function is computed using a 
standard direct solver and the designer may decide upon the complexity level of the 
state equations to be solved. The solution of the optimization problem (the ‘target 
pressure’ problem being one variant) is obtained as a sequence of direct problem 
solutions. Although the formulation of the design problem seems to be straightforward, 
these methods are still time consuming (some hundreds of direct problems are 
sometimes solved in the optimization process, plus the regridding overhead) while in 
complicated 3-D flows the grid deformation and adaption problem may become crucial 
for the convergence of the algorithm. Convergence may be accelerated using suitable 
parametrization techniques (Greff, Forbrich & Schwarten 199 1) or hierarchical 
optimization techniques (Beux & Dervieux 199 1). An alternative approach springs 
from the reformulation of the general optimization problem using optimal control 
theory (Cabuk, Sung & Modi 1991). Then the descend direction may be obtained from 
the solution of an ‘adjoint’ state equation which is usually similar to the state equation 
itself. This technique reduces the computational cost a lot, provided that the adjoint 
equation exists. 

Although optimization methods appear to be a remedy for the design problem this 
is not completely true. There are difficulties in specifying the appropriate cost function 
for a precise problem. If, for example, the shock drag minimization problem is to be 
solved for a transonic airfoil, a hanging shock solution may be obtained if no curvature 



The 3-0 inverse potential target pressure problem. Part 1 133 

constraints are imposed on the profile. Optimization of lift versus drag at a specific 
incidence may cause, as a second example, severe off-design problems. It seems that the 
formulation of the optimization problem using global flow measures (such as lift and 
drag) in an automated procedure is a very risky policy. It is much better to control the 
flow behaviour at the local level and that explains why the target pressure conditions 
are widely used as optimality conditions by the optimization methods as well. Even in 
this case, however, the results may be misleading. If, for instance, the prescribed inviscid 
target pressure distribution is not consistent in terms of profile closure, the 
minimization algorithm will provide a solution which may be far from the desired one 
in physical terms (the transition point location may be altered or flow separation may 
be produced because of local deceleration of the flow). Additionally, optimization 
methods provide no information on the existence and the uniqueness of the solution 
of a flow (design) problem. They lack, therefore, the physical insight of single-pass 
methods. 

Let us now address the question of existence and uniqueness of solution of the 
inverse target pressure problem using the simplest flow model, that is the incompressible 
potential flow. In 2-D this problem is equivalent to the solution of a Laplace equation 
for the velocity logarithm on the transformed plane with Dirichlet-type boundary 
conditions (Stanitz 1953). In this case the inverse target pressure problem is linear and 
accepts a unique admissible solution in simply connected regions. However, this is not 
true for multi-connected regions, the isolated airfoil case for example, where additional 
constraints should be satisfied by the target pressure distribution in order to ensure the 
closure of the profile. A set of integral constraints has been developed by Lighthill 
(1945) for incompressible potential flows, but no explicit set of such constraints is 
available for compressible flows. It is well known, on the other hand, that even if these 
constraints are satisfied the closed profile may be non-admissible (re-entering airfoils 
for example). In 3-D the question has not been answered even for the simplest case of 
incompressible potential flows in simply connected geometries. Stanitz’s (1980, 1985) 
work indicates that in contrast to the 2-D case the 3-D problem is nonlinear. He also 
reported convergence difficulties in several test cases he tried. In the authors’ opinion 
this is due to the non-uniqueness of the solution. 

The purpose of this work is to present a single-pass inverse potential method for the 
solution of the general 3-D target pressure problem. Similar to the approach proposed 
by Stanitz (1980), a potential function 4 and two stream functions $ and 7 are 
introduced as the ‘ natural ’ coordinates. A body-fitted coordinate transformation is 
employed to map the physical (x, y ,  z)-space on which the boundaries of the flow field 
are unknown onto the natural (4, $, y)-space. Computational boundaries on the latter 
space are fixed simply because, in inviscid flows, lateral boundaries are stream surfaces, 
i.e. $ = const. or 7 = const. surfaces, and inflow and outflow boundaries can be 
considered to be potential ones. Thus, assuming that the velocity distribution (or 
prescribed pressure) is given on the lateral as well as on the inflow and outflow 
boundaries of the flow field, one is faced with solving a boundary value problem on the 

The novelty of the present method is that the inverse target pressure problem is 
treated as a geometrical problem rather than a fluid dynamics one. A mathematically 
formal way, employing differential geometry and generalized tensor analysis arguments 
has been adopted in order to formulate the problem and derive a novel set of governing 
equations. Actually the metrics of the (4, $, 7) natural space, which are expressed in 
terms of flow quantities, should satisfy the zero curvature condition of the 3-D 
Euclidean (flat) space. A closed set of three partial differential equations (p.d.e.s) is, 

(4,$, r)-space. 
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thus, derived in terms of the velocity magnitude V,  and the aspect ratio t and the skew 
angle 0 of the elementary streamtube cross-section. Both the formulation of the 
method and the resulting equations are quite different from those proposed by 
Stanitz (1980), although the same set of dependent and independent variables has 
been used. 

It is seen that the 3-D inverse problem with velocity (or pressure)-only boundary 
conditions is an ill-posed problem accepting multiple solutions. This is due to the 
insufficient number of available boundary conditions. The extra boundary conditions 
required to remove this multiplicity may be introduced in several ways, e.g. appropriate, 
desirable, 0-values may be prescribed along the lateral boundaries (stream surfaces). In 
this work we removed this multiplicity by decreasing the degrees of freedom of the 
problem. We seek a particular solution in the resulting reduced space of geometries. We 
avoid, in this way, introducing any extra information which is not always available. In 
this context, it has been shown that the problem accepts as a particular solution 
elementary streamtubes with orthogonal cross-sections. Thus, the number of dependent 
variables is reduced by one and the governing equations simplify to an elliptic-type 
p.d.e. for the velocity magnitude and to a second-order 0.d.e. for the streamtube aspect 
ratio. The solution of these two equations provides the flow field in a single-pass 
manner without requiring any feedback from the geometry. In a subsequent step, 
geometry is determined independently by integrating Frenet equations along the 
natural coordinate lines. The decoupling of flow and geometry equations is obviously 
attractive from the computational point of view. However, the present method being 
a single-pass one, cannot inherently incorporate sophisticated flow or geometrical 
constraints. Some control on the geometry is effected a priori via the flow-field 
boundary conditions, e.g. Dirichlet velocity conditions on the boundary of the natural 
coordinate space are related to the arclength of the boundary streamlines, while 
Neumann velocity conditions are related to local streamline curvature. It is worth 
noting that the present method is, in itself, a simple flow solver which employs a very 
specific body-fitted coordinate transformation. In that respect it can be incorporated 
as the state equation in any optimization loop. The replacement of analysis flow solvers 
with the inverse one alleviates the regridding penalty due to the moving of the 
boundaries within the iterative process. This is because the inverse solver handles the 
governing equations in a simple rectangular natural body-fitted coordinate space. The 
present authors have applied this approach to 2-D duct optimization (Workshop on 
Selected Inverse and Optimum Design Problems, organized by Brite Euram Project 
1082 partners, June 1992). 

Part 1 of the study, this paper, focuses on the theoretical aspects and the formulation 
of the method. The numerical implementation and some validation tests cases of the 
proposed methodology in 3-D internal configurations are presented in Part 2 
(Dedoussis, Chaviaropoulos & Papailiou 1995). 

2. Problem statement and basic equations 
The inverse target pressure problem can be stated as: ‘Given a prescribed target 

velocity (pressure) distribution on the entire (lateral, inflow and outflow) boundary of 
a 3-D flow field determine the corresponding boundary shape’. In the present work it 
has been assumed that the flow is three-dimensional steady, compressible inviscid and 
irrotational. It has been also assumed that the fluid is a perfect gas. 



The 3-0 inverse potential target pressure problem. Part 1 135 

Under the above assumptions the flow equations simplify to 
continuitv eauation 

irrotationality condition 

density equation (energy conservation for isentropic changes) 

V.(pV) = 0; (1) 

v x v = 0 ;  (2) 

In the above equations the velocity V is normalized with a reference value V, and 
the density p with the corresponding p m  value. M ,  is the Mach number at the reference 
point and y is the ratio of specific heats cp /c , .  

The irrotationality condition of the velocity field expressed by (2) is satisfied 
identically, by requiring the velocity vector to be the gradient of a scalar function, i.e. 
potential function. The potential function $ is defined by the relation 

v =  V$. (4) 

The continuity equation (1) can be identically satisfied by introducing two stream 

(5) 

Equation ( 5 )  indicates that the velocity vector is tangent to both @ = const. and 
y = const. surfaces, which are appropriately termed as stream surfaces. Obviously 
intersections of stream surfaces, which belong to a different family, are streamlines. 
Schematically, potential and stream surfaces are shown in figure 1 (a). 

The potential function $ and the two stream functions @, y are considered to be the 
independent variables. The physical (x, y ,  z)-space, on which the boundaries of the flow 
field sought are unknown, is mapped onto the natural (4, @, 7)-space via a body-fitted 
coordinate transformation. 

functions @, y (Yih 1957) defined by the relation 

p v  = V7j x vy. 

3. The concept 
Differential geometry and generalized tensor analysis arguments are employed in 

order to derive the governing equations. For completeness an overview of differential 
geometry principles has been included in the Appendix. The line of thought is as 
follows. 

Consider a representation of the 3-D (x, y ,  z )  Euclidean space in terms of the natural 
curvilinear coordinates ($, @, 7). Euclidean space, being flat, has zero curvature. 
Referring to the Ricci curvature tensor the zero-curvature condition reads 

R,, = 0 with r ,m = 1,2,3. (6) 

From the definition of the Ricci tensor and the Christoffel symbols r;, see (A 8)- 
(A lo), it is observed that the zero-curvature condition is expressed in terms of the 
elements of the metrics tensor and their first- and second-order partial derivatives. In 
that sense, the flat-space condition provides six metric compatibility conditions which 
have to be satisfied for any parametrization of the physical space, including the ($, @, y) 
one. In the present formulation the (4, @, y) natural coordinates have been adopted, 
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k z  

FIGURE 1 .  Natural (4, $, 7) coordinate system and elementary streamtubes. (a) General 3-D case. 
(b) 3-D case with orthogonal $- and 7-family stream surfaces. 

having the advantage that the corresponding metrics tensor is expressed in terms of 
flow quantities only. The governing equations of the inverse flow problem in the 
($, $, r)-space, therefore, are provided via the satisfaction of the zero curvature 
conditions. 

It is emphasized, however, that the six metrics compatibility conditions (6)  are not 
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independent, since in Riemannian geometry the Ricci tensor elements satisfy the 
following Bianchi identities (Synge & Schild 1978) : 

grmRrm,k-grmR,k ,m-gi~Rik , j  = 0 with i , j , k , r , m  = 1,2,3. (7) 

Bianchi identities provide three (k  = 1,2,3) equations interrelating the covariant 
derivatives (Rij ,  k) of the curvature tensor elements, thus reducing the overall number 
of independent metrics compatibility conditions to three only. According to the 
discussion in Malvern (1 969), satisfaction of either the diagonal zero-curvature 
conditions, equations (6), or the off-diagonal ones only, is not sufficient for the flatness 
of the physical 3-D space. For a simply connected region, this is established if any one 
of the set of the three conditions is satisfied in the interior of the field and the other one 
on the boundaries. Evidently, this combination results in a boundary value problem. 

4. Method formulation 
The contravariant base of the natural curvilinear ($, $, y) coordinate system is 

g' = V$, g2 = V$, g3 = vy, (8) 

where indices 1, 2, 3 are associated with the $, $, y coordinates respectively. 
The metrics and the conjugate (contravariant) metrics of the ($, $, y) system are 

evaluated, using (4) and ( 5 )  and standard tensor relations. In terms of flow quantities 
the metrics and conjugate metrics of the (4, $, y) coordinate system are 

g,,  = l /(pVt sin e), gZ2 = pVt/sin 8; 

g,,  = g,, = l/@VtanO), gZ3 = g32 = --pV/tan@; 

g,, = t/(pVsin e), g3, = pV/(t  sin 0); 

g, ,  =g21 = g , ,  = g , ,  = 0, g - g  - g  - g  - , 12 - 2 1  - 13 - 31 - 0 

(9) 

where 8 is the angle between g ,  and g ,  (or the angle at which a $ = const. surface 
intersects a y = const. stream surface on a potential, $ = const., surface, see figure 1 a)  
and t is a variable defined as 

t 2  = g33/g22* (10) 

Variable t represents the aspect ratio of the cross-section ($ = const. section) of the 
elementary streamtube defined by the stream surfaces $, $++$ = const. and y, 
y + dy = const., with d$ = dy. 

The off-diagonal elements of the metrics and conjugate metrics tensor, g,, and g" 
(with i = 1 and j  = 2,3) respectively, are zero since via the defining relations (4) and ( 5 )  
both V$ and Vy are normal to V$, i.e. V$.V$ = V$.Vy = 0 (note that in general 
V$* v y  = gZ3 * 0). 

The elementary distance ds expressed in terms of the natural coordinates is 

ds2 = g11 w2 + g,,  w2 + g,, dy2 + 2g2, d$ dy. (1 1) 

Introducing (9) in the defining relations of the Christoffel symbols (see (A8) and 
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(A 9)), expressions of the latter in terms of the dependent variables V,  p, t ,  8 are derived. 
For example 

r:, = -(In V)$,  

Til = (-p/VtanO)(ln V),+@t/VsinO)(ln V),, 

= @/ Vt sin 0) (In V ) @  - @/ Vtan 0) (In V),, ] (12) 

where indices $, @ and 7 denote partial derivatives. 

zero conditions for the elements of the Ricci tensor; 
The governing p.d.e.s for V, t and 0 are derived by the following combinations of the 

-R11/g11 = 07 (13) 

(14) 

R22lg22 + R 3 3 / g 3 3 - ~ ~ 2 3 / g 2 3 - - l l / g l l  = 0. (15) 

- R22/g22 + R 3 3 / & 3  = 07 

Equations (13)-(15) supplemented by (3) constitute a closed set of p.d.e.s for the 
quantities V, p,  t ,  0. Satisfying only three compatibility conditions is in accordance with 
the number of independent variables considered ( V ,  t ,  0) as well as with the overall 
number of independent conditions. Strictly, (1 3 t (  15) constitute necessary but not 
sufficient conditions for the flatness of the 3-D space considered. However, the 
' sufficient' character of the conditions is indicated by the satisfactory reproduction 
calculations presented in Part 2. 

As will be demonstrated in the following sections, this particular linear combination 
of the individual Ricci tensor elements leads to a tractable set of governing equations, 
which can be solved for the flow quantities in a self-contained, single-pass, manner 
requiring no geometry feedback. The geometry is determined in a subsequent step by 
transforming the flow solution on the natural space, to the physical, Cartesian, one. 

5. Governing equations of the flow field 
The developed form of the governing equations (1 3)-( 15) is : 

velocity ( V )  equation 

(In PI$$ + (In V$$ - (In PI$ [(In PI$ + (In V>$I 
+ ;( 1 + cot2 0) {[(lnp)$ + (In V)$  + (In sin 6),12 - (In t);} 

- cot2 0 [(ln p)$ + (In V)$ + (In tan @),I2 

+ Cot/ Vsin 0) {(ln V)$$ - (In V ) @  [(ln p)$ + (In V ) @  + (In sin 6)@- (In t)& 

+ Co/tVsin 6)  {(ln V7, - (In V ) ,  [(ln p), + (In V ) ,  + (In sin 0), + (In t),]} 

+ C. cot 0/ V )  { - (In V)$,  + (In V)$  [(ln p), + (In V ) ,  + (In tan e),] 
+(In V),[(lnp)@+(ln V),+(lntan0),]} = 0; (16) 

aspect ratio ( t )  equation 

(In - (In t)$ [(ln p)$ + 2 (In sin 6),] 

1 1 + @ sin 0/ V )  t (In V)@@ - - (In V),, + t (In V)$(ln p)$ - (In V ) ,  (In p), { t 

+ (1 /cos 0) [(ln V ) ,  (In sin 6), - (In V ) $  (In sin 0),] 
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skew angle (0) equation 
(In sin 8)$$ - (In p)# (In sin O) ,  

+ (p cot 0/ V )  [2(ln V)$, + (In V)$  (In t), - (In V)?, (In t)$] 

(18) +@cos0/")[t(ln V)$(lnp)$+~(ln 1 V),(lnp),] = 0, 

where cot 0 = (tan 8)-'. 
Noting that p is expressed in terms of V via (3), equations (16)-(18) form a closed 

system of p.d.e.s for the dependent variables V, t and 8. The above equations, 
therefore, represent the governing equations for the general 3-0 inverse potential 
problem. This system of equations forms a boundary value problem for the main three 
dependent variables. According to the definition of the target pressure inverse problem, 
complete boundary conditions are only available for the velocity magnitude, while 
there are no boundary conditions for t and 8 along the lateral boundaries. 

Following the discussion presented in the previous section it was investigated 
whether the two compatibility conditions which have not been taken into account 
could provide this extra information for t and 0. The development of these conditions 
revealed that it is not possible to obtain a set of equations which contains information 
intrinsic to the lateral boundary only. This is mainly due to the presence of second- 
order mixed derivatives, e.g. (In ")?$ in the R,, = 0 condition, along with first-order 
ones with respect to all three coordinate directions. These cannot by eliminated using 
the available information. It could be argued therefore that the 3-D inverse potential 
target pressure problem, as addressed above, is ill-posed, accepting multiple solutions. 

The multiplicity of the solution could be removed by providing extra information for 
either t or 0 along the lateral boundaries (stream surfaces). An alternative way of 
removing the multiplicity of the solution without introducing extra a priori unknown 
information is by reducing the degrees of freedom of the problem. In this work the 
latter strategy has been adopted. Actually the dependency of the solution on 6' may be 
removed by observing that the 0-equation (1 8) is satisfied identically for constant 
8 = 90". This implies that a flow with elementary streamtubes with orthogonal cross- 
section (see figure 1 b) represents a particular solution of the inverse potential target 
pressure problem. Assuming that 0 = const. = 90", the &equation becomes redundant, 
while the V- and t-equations, (1 6) and (17) respectively, are simplified considerably and 
a unique solution may be obtained with the available velocity boundary conditions. 

Hereafter, therefore, we deal with the following well-posed version of the general 
3-D inverse target pressure problem: 'Given a prescribed target velocity (pressure) on 
the entire boundary of a 3-D flow field made up of orthogonal elementary streamtubes, 
determine the corresponding boundary shape. ' 

With the assumption of orthogonal streamtubes the resulting governing equations 
are : 
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6. Discussion of the flow equations 
Appropriate boundary conditions for the solution of the flow equations are 

discussed in this section. The analysis is restricted to the compressible form of the 
governing equations which have been derived with the assumption of orthogonal 
streamtubes cross-section. 

Assuming a given t-field, then (19) represents an elliptic-type quasi-linear p.d.e. for 
(In V ) .  In accordance with the standard ‘ full-potential ’ equations the mathematical, 
elliptic or hyperbolic, character of the velocity equation (19), in the streamwise sense, 
is controlled by the size of the local Mach number, i.e. subsonic or supersonic flow 
conditions respectively. Considering (3), it can be shown that 

(21) (lnp)+ = - M 2  (In V)+, 

where M is the local Mach number. Introducing (21) into (19) and rearranging the 
second-order partial derivative terms, it is straightforward to show that the resulting 
equation is elliptic in the streamwise (#) direction when M < 1, and hyperbolic when 
M > 1 .  Evidently, for subsonic flows, velocity boundary conditions should be specified 
all round the integration domain. 

The aspect ratio equation (20) may be considered as a second-order 0.d.e. along the 
streamlines, i.e. in the #-direction. In that respect, (20) forms a boundary value 
problem requiring boundary conditions for t on the inflow and outflow boundaries 
only, which are considered to be potential surfaces. It is emphasized that the closed set 
of equations (19) and (20), which govern the flow field without requiring any 
geometry feedback, form a strongly nonlinear problem for V and t ,  even for the 
simplest, the potential incompressible, 3-D case. 

When the pure target pressure problem is treated, Dirichlet-type boundary 
conditions are imposed on the velocity. An interesting alternative is the ‘mixed’ 
problem, where part of the boundary geometry is specified, while a target pressure 
distribution is prescribed on the remaining part. Considering that the fixed part of the 
boundary geometry belongs to a 7 = const. surface, then the Gaussian curvature K, of 
this surface reads 

This relation is derived via a suitable combination of (A 7) with the assumption of 
orthogonal natural coordinates. Substituting the metrics expressions (9) in (22) it yields 
for 8 = 90” 

Thus, for a given K,-distribution, (23) forms a nonlinear Neumann-type boundary 
condition on V and t variables. In general, the implementation of condition (23) to the 
solution of the inverse problem, is rather inconvenient. However, there is a class of 
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surfaces, including the planar, the cylindrical and the conical surface (very common in 
engineering applications) which have identically zero Gaussian curvature. In such a 
case the two derivative factors of condition (23) are decoupled, yielding linear 
Neumann-type boundary conditions. 

It should be noted that the Gaussian curvature K, of an 7 = const. surface can be 
expressed in terms of quantities intrinsic to the surface as (Synge & Schild 1978) 

Equating the right-hand sides of (22) and (24) a metrics compatibility condition is 
derived which is not independent of the flatness conditions (6). Linear combination of 
the Gaussian curvatures compatibility conditions for K,, K, and K4 provide the 
governing equations (19) and (20) in an alternative way. 

7. Reduced forms of the flow equations 

3-D inverse problem, some simple cases have been examined. 
In order to check the validity of the new governing equations proposed for the 

7.1. 1-D incompressible case (point sourceJEowJield) 
The flow field generated by a point source exhibits spherical symmetry about the source 
itself. Consider an orthogonal streamtube originating from the source. Since the 
velocity vector is directed radially away from the source, the radial coordinate R is 
associated with $ while the $- and 7-coordinates, being normal to $, measure surfaces 
of concentric spheres. For this case both $- and 7-derivatives vanish and the proposed 
flow equations (19) and (20) become 

(In V),,+i(ln V ) ;  = 0, (In t),, = 0. (25) 

This system of equations is satisfied by the solution V - $’( - 1/R2) and t = const. 
which is indeed the known solution of the point source flow problem. 

The above solution is valid even when the considered streamtube, defined by 
$ = const. and 7 = const. surface, is non-orthogonal. It is also noted that for this 
1-D case, an arbitrary but constant streamtube skew-angle 0 satisfies (18) identically. 
This is in accordance with the conclusion that multiple geometrical solutions may be 
obtained if only velocity boundary conditions are imposed. 

7.2. 2-0 compressible case 
The 2-D form of the compressible flow equations is derived by considering that the flow 
derivatives vanish along one of the $- or 7-directions and that the corresponding 
metric is constant, say equal to one. Obviously, the assumption of orthogonal 
streamtubes is valid also for the 2-D case. Assuming that g,, = 1 and 0 = 90°, then t 
is implicitly defined via the metrics expressions (9) as 

t = pv.  (26) 

With t given by (26) and taking into account that 7-derivatives vanish, (19) and (20), 
governing the V- and t-fields respectively, become identical with one another, reducing 
to 
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Equation (27) is the well-known equation of Stanitz (1953) for 2-D potential 
compressible flows. This equation has been used by the present authors for the design 
of 2-D ducts (Dedoussis et al. 1993) and airfoils (Chaviaropoulos et al. 1993). 

7.3. Axisymmetric compressible case 
Another case where the assumption of orthogonal streamtubes is self-evident is the 
axisymmetric flow with zero azimuthal velocity component. Associating 7 = const. 
surfaces with meridional planes and, thus, neglecting the 7-derivatives, (19) and (20) 
are reduced to 

(In V)$$ + (In PI$$ + Cot/ V )  (In +m v; - (In 0; - (1nP);l 

-Cot/ V )  (In V)e  [(In V ) $  - (In t)eI = 0, (28) 

(29) (In O$$ - ( b > $  (In O$ + Cot/ V )  [(In V)$b$ + (In V ) k  (In P)$l = 0. 

The above set of equations has been applied successfully to reproduction test cases of 
non-annular axisymmetric ducts (Dedoussis, Chaviaropoulos & Papailiou 1992). 
Treating the axisymmetric case as a particular 3-D one, one gets the advantage of 
solving the V- and t-equations simultaneously. In this way, the need to iterate between 
the flow-field and geometry solutions, required by other axisymmetric approaches 
which are extensions of standard 2-D inverse methods and have the local radial 
distance R as a principal variable (e.g. Nelson & Yang 1977), is alleviated. The flow-field 
and geometry calculation procedures, therefore, remain entirely independent. 
Effectively, the t-equation plays the role of an R-equation. It can be shown that t is 
proportional to R2. 

8. Implications and limitations of the orthogonal streamtubes assumption 
The assumption of orthogonal elementary streamtubes is not directly associated 

with any particular topology of the flow boundaries. There are several ways to group 
the individual streamlines into streamtube filaments. Considering, for example, the 
internal flow case presented in figure 2, one could use two different ways - and H- and 
an 0-type - of partitioning the flow field with orthogonal elementary streamtubes. 
Obviously these two partitionings correspond to different t-field inflow boundary 
conditions. 

With the H-type partitioning the implementation of the governing equations and 
their boundary conditions is straightforward. The consequence of this partitioning is 
that the lateral flow boundaries must have four right-angled edges, implying non- 
smooth cross-sectional boundary contours. Although this may be quite adequate for 
many design applications (see, for example, the test cases presented in Part 2) it 
certainly limits the generality of the proposed inverse method. 

An 0-type orthogonal streamtubes partitioning, on the other hand, does not imply 
edged-type boundaries and is therefore more appropriate for designing smooth 
contoured shapes. It is seen that in this case the assumption of orthogonal streamtubes 
is not all that restrictive as far as the boundary of the designed geometry is concerned. 
However, 0-type partitioning exhibits a singular streamline along which the streamtube 
aspect ratio cannot be defined (point 0 of figure 2). In this case the governing V- and 
t-equations, (19) and (20) respectively, can be solved only if V is specified along the 
singular streamline. Evidently, different velocity distributions on this streamline lead to 
different flow-field shapes. It is observed again that the attempt to increase the degrees 
of freedom of the geometry sought leads to multiple solutions. 
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(4 (b) 

Sineular point 0 

FIGURE 2.  Alternative partitionings of an internal flow field with orthogonal elementary 
streamtubes. (a) H-type. (6)  0-type. 

9. Geometry calculation 
Ultimately, the objective of an inverse method is to calculate the geometry which 

complies with the prescribed flow qualities (properties). In the previous sections it has 
been shown that the flow equations (19) and (20) governing the 3-D inverse potential 
target pressure problem form a closed set of p.d.e.s on the natural coordinates space, 
requiring no information - feedback - from the physical geometry itself. The purpose 
of this section is to demonstrate how the target geometry is obtained, once the flow field 
has been determined. 

According to the analysis presented in the Appendix the Cartesian coordinates of the 
geometry position vector r can be evaluated in two steps by integrating (A 7) and 
(A 1) along any one of the natural coordinates lines. If, for example, a II. = const., 
7 = const. streamline is considered, (A 7) provides the following system of 0.d.e.s: 

where the matrix A, elements, being a sub-set of the 27 Christoffel symbols, are 
analytical expressions of the (known) flow quantities and their partial derivatives on 
the natural space. 

Equations (30), which represent a generalized form of the Frenet equations, may be 
integrated to provide the covariant vector base if appropriate initial conditions are 
prescribed for (g,, g,, gJ. The Cartesian coordinates of the geometry can be evaluated 
then, by integrating the covariant base, i.e. (Al), along any one of the natural 
coordinates. Starting, therefore, from a known position r,, and integrating along a 
streamline, for instance, we get 

Y = r o + r  g,d$. (31) 
$0 

It should be noted that the evaluation of the A, matrix elements involves inner flow 
information even when the integration of (30) is performed along the flow-field 
boundaries. This is the reason why the solution of the flow-field equations precedes the 
geometry calculation. 
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10. Conclusions 
An inverse potential methodology is introduced for the solution of the 3-D target 

pressure problem. The method is based on a body-fitted coordinate transformation 
which maps the physical space onto a natural one. A potential function and two stream 
functions are used as the natural coordinates (independent variables), whilst the 
velocity magnitude as well as the aspect ratio and the skew angle of the elementary 
streamtube cross-section are considered to be the dependent ones. 

A novel set of governing equations for the inverse 3-D problem is proposed which 
is derived using differential geometry and generalized tensor analysis arguments. The 
general 3-D inverse problem is treated as a geometrical one which has to satisfy the 
zero-curvature metrics compatibility conditions of the 3-D Euclidean, flat, space. It 
seems that in the general case the 3-D inverse target pressure problem is ill-posed, 
accepting multiple solutions. 

A particular solution of the 3-0  inverse problem is shown to be the one with 
elementary streamtubes with orthogonal cross-section, i.e. orthogonal stream surfaces 
are assumed. The governing equations and their boundary conditions are presented 
and discussed for this case. Reduced forms of these equations for point source, 2-D and 
axisymmetric flows are also examined. It is shown that the resulting system of 
governing equations can be solved with velocity-only boundary conditions because of 
the special form of the streamtube aspect ratio equation. On the natural coordinates 
space the flow field is determined in a self-contained manner without requiring any 
feedback from the actual geometry. The geometry is determined after the flow solution 
has been calculated, by integrating the generalized Frenet equations along the natural 
coordinates lines. A brief discussion on the implications and limitations of the 
assumption of orthogonal stream surfaces on the geometry is also included. 

The numerical implementation as well as two validation duct design test cases of the 
proposed inverse method are presented in Part 2. 

This work was financed by the DG XI1 of the European Economic Community in 
the context of the BRITE-EURAM AERO-0026-C(TT) ‘Optimum Design in 
Aerodynamics ’ Project. 

Appendix. Differential geometry overview 
In this Appendix key elements of differential geometry are presented. More details 

may be found in any differential geometry or tensor calculus book, e.g. Synge & Schild 
(1978). 

Let xi (i = 1,2,3) be the Cartesian coordinates and ui ( j  = 1,2,3) a body-fitted 
parametrization of the flow field considered. Let gi  and g i  represent the covariant and 
contravariant orthonormal vector bases defined as : 

where r = ( x 1 , x 2 , x 3 ) ;  V =  - - - 
( a z l ,  a:Z ?a:3) 

are the position vector and the gradient operator respectively. Si is the Kronecker delta. 
The covariant and contravariant metrics tensors are defined respectively as 
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The contravariant metrics (or conjugate metrics) gii represent the cofactors of the 
covariant metrics satisfying the following identity : 

gijgi, = c?:, (A 4) 
where repeated indices denote summation (Einstein convention). 

covariant (or contravariant) metrics as 
The Jacobian J of the coordinate transformation may be expressed in terms of the 

J 2  = det (gii) = det-' (gij), 

ds2 = gii d d  d d .  

(A 5 )  

(A 6)  

and the metric (infinitesimal distance) is expressed on the transformed domain as 

The partial derivatives of the covariant (and contravariant) bases with respect to the 
curvilinear coordinates are expressed in terms of the Christoffel symbols of the second 
kind rk. as 

The Christoffel symbols of the first and second kind, [ij,k] and rg. respectively, are 
defined in terms of partial derivatives of the metrics tensor as 

r; = gkm [ i j ,  m].  

The space curvature tensor is expressed in terms of the Christoffel symbols and their 
derivatives. It has six independent entries that form the symmetric Ricci curvature 
tensor R,,, defined as 

(A 10) R rm =--- a~ L a~ Fm + r rn r ;, - r rrn r gn. 
a u m  aun 

The Euclidean space, being flat, has zero curvature. Referring to the Ricci curvature 
tensor the zero-curvature condition reads 

R,, = 0 with r ,m  = l ,2,3.  (A 11) 
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